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Abstract
The influence of compressibility on the stability of the scaling regimes of the
passive scalar advected by a Gaussian velocity field with finite correlation time
is investigated by the field theoretic renormalization group within two-loop
approximation. The influence of compressibility on the scaling regimes is
discussed as a function of the exponents ε and η, where ε characterizes the
energy spectrum of the velocity field in the inertial range E ∝ k1−2ε and η

is related to the correlation time at the wave number k which is scaled as
k−2+η. The restrictions given by nonzero compressibility on the regions with
stable infrared fixed points which correspond to the stable infrared scaling
regimes are discussed in detail. A special attention is paid to the case of the
so-called frozen velocity field, when the velocity correlator is time independent.
In this case, explicit inequalities which must be fulfilled in the plane ε–η

are determined within two-loop approximation. The existence of a ‘critical’
value αc of the parameter of compressibility α at which one of the two-loop
conditions is cancelled as a result of the competition between compressible and
incompressible terms is discussed. Brief general analysis of the stability of the
scaling regime of the model with finite correlations in time of the velocity field
within two-loop approximation is also given.
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1. Introduction

One of the main problems in the modern theory of fully developed turbulence is to verify the
validity of the basic principles of Kolmogorov–Obukhov (KO) phenomenological theory
and their consequences within the framework of a microscopic model [1, 2]. On the
other hand, recent experimental, numerical and theoretical studies signify the existence of
deviations from the well-known Kolmogorov scaling behaviour. The scaling behaviour of the
velocity fluctuations with exponents, whose values are different from Kolmogorov ones, is
known as anomalous and is associated with intermittency phenomenon [2]. Even though the
understanding of the intermittency and anomalous scaling within the theoretical description
of the fluid turbulence on the basis of the ‘first principles’, i.e., on the stochastic Navier–
Stokes equation, still remains an open problem, considerable progress has been achieved in
the studies of the simplified model systems which share some important properties of the real
turbulence.

The crucial role in these studies is played by models of advected passive scalar field
[3]. Maybe the most known model of this type is a simple model of a passive scalar
quantity advected by a random Gaussian velocity field, white in time and self-similar in
space, the so-called Kraichnan’s rapid-change model [4]. It was shown by both natural and
numerical experimental investigations that the deviations from the predictions of the classical
KO phenomenological theory are even more strongly displayed for a passively advected scalar
field than for the velocity field itself (see, e.g., [5] and references cited therein). At the same
time, the problem of passive advection is much more easier to be consider from theoretical
point of view. There, for the first time, the anomalous scaling was established on the basis
of a microscopic model [6] and corresponding anomalous exponents was calculated within
controlled approximations (see review [5] and references therein).

In paper [7], the field theoretic renormalization group (RG) and operator-product
expansion (OPE) were used in the systematic investigation of the rapid-change model. It
was shown that within the field theoretic approach the anomalous scaling is related to the very
existence of the so-called dangerous composite operators with negative critical dimensions in
OPE (see, e.g., [8, 9] for details). Important advantages of the RG approach are its universality
and calculational efficiency: a regular systematic perturbation expansion for the anomalous
exponents was constructed, similar to the well-known ε-expansion in the theory of phase
transitions.

Afterwards, various generalized descendants of the Kraichnan model, namely, models
with inclusion of large- and small-scale anisotropy [10], compressibility [11] and finite
correlation time of the velocity field [12, 13] were studied by the field theoretic approach.
General conclusion is that the anomalous scaling, which is the most important feature of the
Kraichnan rapid-change model, remains valid for all generalized models.

In paper [12], the problem of a passive scalar advected by the Gaussian self-similar velocity
field with finite correlation time [14] was studied by the field theoretic RG method. There,
the systematic study of the possible scaling regimes and anomalous behaviour was present at
one-loop level. The two-loop corrections to the anomalous exponents were obtained in [15].
In paper [13], the influence of compressibility on the problem studied in [12] was analysed.
In what follows, we shall continue with the investigation of this model from the point of view
of the influence of compressibility on the stability of the scaling regimes within two-loop
approximation. It can lead to sufficient restrictions of the parameter space where the stable
fixed points can exist. This, as we shall see rather complicated task, is the first non-trivial step
on the way to understand the influence of the compressibility of the system on the two-loop
corrections to anomalous dimensions of the measurable quantities [15].
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2. Description of the model

We consider the advection of a passive scalar field θ ≡ θ(x) ≡ θ(t, x) which is described by
the stochastic equation

∂tθ + vi∂iθ = ν0�θ + f θ , (1)

where ∂t ≡ ∂/∂t, ∂i ≡ ∂/∂xi, ν0 is the coefficient of molecular diffusivity (hereafter all
parameters with a subscript 0 denote bare parameters of unrenormalized theory; see below),
� ≡ ∂2 is the Laplace operator and f θ ≡ f θ (x) is a Gaussian random noise with zero mean
and correlation function

〈f θ (x)f θ (x ′)〉 = δ(t − t ′)C(r/L), r = x − x′, (2)

where parentheses 〈· · ·〉 hereafter denote average over corresponding statistical ensemble. The
noise maintains the steady state of the system but the concrete form of the correlator is not
essential. The only condition which must be fulfilled by the function C(r/L) is that it must
decrease rapidly for r ≡ |r| � L, where L denotes an integral scale related to the stirring.
The velocity field v(x) obeys a Gaussian distribution with zero mean and correlator [13]

〈vi(x)vj (x
′)〉 = Dv

ij (x, x ′)

=
∫

dω ddk

(2π)d+1
(Pij (k) + αQij (k))D̃v(ω, k) exp[−iω(t − t ′) + ik(x − x′)], (3)

where k = |k| is the wave number, ω is frequency, d is the dimensionality of the x space. In
what follows, we shall work with compressible velocity field which is demonstrated by the
form of the tensor structure of the correlator (3), namely, it consists of two parts: the standard
transverse projector Pij (k) = δij − kikj /k2 and the longitudinal projector Qij (k) = kikj /k2

which is related to compressibility. The parameter α � 0 is a free parameter. The value α = 0
corresponds to the divergence-free (incompressible) advecting velocity field. The function D̃v

is chosen as follows [12, 13]:

D̃v(ω, k) = g0ν
3
0k

4−d−2ε−η

(iω + u0ν0k2−η)(−iω + u0ν0k2−η)
. (4)

The correlator (4) is related to the energy spectrum via the frequency integral

E(k) � kd−1
∫

dω D̃v(ω, k) � g0ν
2
0

u0
k1−2ε. (5)

It means that the coupling constant g0 (more precisely g0/u0 [13]) and the exponent ε describe
the equal-time velocity correlator or, equivalently, energy spectrum. On the other hand, the
constant u0 and the second exponent η are related to the frequency ω � u0ν0k

2−η which
characterizes the mode k. Thus, in our notation, the value ε = 4/3 corresponds to the well-
known Kolmogorov ‘five-thirds law’ for the spatial statistics of velocity field and η = 4/3
corresponds to the Kolmogorov frequency. Simple dimensional analysis shows that the charges
g0 and u0 are related to the characteristic ultraviolet (UV) momentum scale � (of the order of
inverse Kolmogorov length) by

g0 � �2ε+η, u0 � �η. (6)

At the end of this section, let us briefly discuss two important limits of the considered
model (3), (4) (see also [12, 13]). First is the so-called rapid-change model limit when
u0 → ∞ and g′

0 ≡ g0
/
u2

0 = const,

D̃v(ω, k) → g′
0ν0k

−d−2ε+η, (7)
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and the second is the so-called quenched (time-independent or frozen) velocity field limit
which is defined by u0 → 0 and g′′

0 ≡ g0/u0 = const,

D̃v(ω, k) → g′′
0ν2

0k−d+2−2επδ(ω). (8)

Here, the velocity correlator is independent of time in the t representation.

3. Field theoretic formulation of the model

The stochastic problem (1)–(3) is equivalent to the field theoretic model of the set of fields
 ≡ {θ, θ ′, v} (see, e.g., [8, 16]) with action functional

S() = −1

2

∫
dt1 ddx1 dt2 ddx2 vi(t1, x1)

[
Dv

ij (t1, x1; t2, x2)
]−1

vj (t2, x2)

+
∫

dt ddx θ ′[−∂tθ − vi∂iθ + ν0
θ ], (9)

where, in what follows, unimportant term related to the noise (2) is omitted, θ ′ is an auxiliary
scalar field and summations are implied over the vector indices. The second line in (9)
represent the Martin–Siggia–Rose action for the stochastic problem (1) at fixed velocity field
v and the first line describes the Gaussian averaging over v defined by the correlator Dv in (3)
and (4).

Standardly, the formulation through the action functional (9) replaces the statistical
averages of random quantities in the stochastic problem (1)–(3) with equivalent functional
averages with weight exp S(). Generating functionals of total Green functions G(A) and
connected Green functions W(A) are then defined by the functional integral

G(A) = eW(A) =
∫

D eS()+A, (10)

where A(x) = {Aθ,Aθ ′
, Av} represents a set of arbitrary sources for the set of fields ,

D ≡ DθDθ ′Dv denotes the measure of functional integration, and linear form A is
defined as

A =
∫

dx
[
Aθ(x)θ(x) + Aθ ′

(x)θ ′(x) + Av
i (x)vi(x)

]
. (11)

Action (9) is given in a form convenient for a realization of the field theoretic perturbation
analysis with the standard Feynman diagrammatic technique. The matrix of bare propagators
is obtained from the quadratic part of the action. The wave number–frequency representation
of, in what follows, important propagators are: (a) the bare propagator 〈θθ ′〉0 defined as

〈θθ ′〉0 = 〈θ ′θ〉∗0 = 1

−iω + ν0k2
, (12)

and (b) the bare propagator for the velocity field 〈vv〉0 given directly by (4), namely,

〈vivj 〉0 = (Pij (k) + αQij (k))Dv(ω, k). (13)

Their graphical representation is present in figure 1.
The triple (interaction) vertex −θ ′vj∂j θ = θ ′vjVj θ is present in figure 2, where

momentum k is flowing into the vertex via the scalar field θ .
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〈θθ′〉0 =

〈vivj〉0 =

Figure 1. The graphical representation of the propagators of the model.

Vj = −ikj ≡ θ

vj

θ′

Figure 2. The interaction vertex of the model (wave number–frequency representation).

4. Renormalization and RG analysis

The model under consideration is logarithmic at ε = η = 0 (the coupling constants g0 and u0

are dimensionless), therefore the UV divergences in the correlation functions have the form
of the poles in ε, η and their linear combinations.

The crucial role in the renormalization of the model is played by the total canonical
dimension of an arbitrary one-particle irreducible correlation (Green) function � =
〈 · · · 〉1−ir . It plays the role of the formal index of the UV divergence and it is given
as follows [8, 9]:

d� = dk
� + 2dω

� = d + 2 − Nd, (14)

where N = {Nθ,Nθ ′ , Nv} are the numbers of corresponding fields entering into the function
�, dk

� and dω
� are the canonical momentum dimension and the canonical frequency dimension

of the function �, respectively, and summation over all types of fields is implied. In what
follows, we shall use the definitions of the canonical dimensions of the fields  as they are
given in [12, 13]. It is well known that superficial UV divergences, whose removal requires
counterterms, can be presented only in those Green functions � for which the total canonical
index d� is non-negative integer.

From the dimensional analysis of the model (see, e.g., [12, 13]), we conclude that for
any d, superficial UV divergences can exist only in the 1-irreducible functions 〈θ ′θ〉1−ir and
〈θ ′θv〉1−ir . To remove them one needs to include into the action functional the counterterm of
the form θ ′
θ and θ ′vi∂iθ . Their inclusion is manifested by the multiplicative renormalization
of the bare parameters g0, u0 and ν0, and the velocity field v in the action functional (9):

ν0 = νZν, g0 = gµ2ε+ηZg, u0 = uµηZu, v → Zvv. (15)

Here, the dimensionless parameters g, u and ν are the renormalized counterparts of the
corresponding bare ones, µ is the renormalization mass (a scale setting parameter) and
Zi = Zi(g, u, α), i = ν, g, u, v, are renormalization constants.

The renormalized action functional has the following form:

S() = −1

2

∫
dt1 ddx1 dt2 ddx2 vi(t1, x1)

[
Dv

ij (t1, x1; t2, x2)
]−1

vj (t2, x2)

+
∫

dt ddx θ ′ [−∂tθ − Z2vi∂iθ + νZ1
θ ] , (16)
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where the correlator Dv
ij is written in renormalized parameters (in wave number–frequency

representation)

D̃v
ij (ω, k) = (Pij (k) + αQij (k))gν3µ2ε+ηk4−d−2ε−η

(iω + uνµηk2−η)(−iω + uνµηk2−η)
. (17)

By comparison of the renormalized action (16) with definitions of the renormalization constants
Zi, i = g, u, ν (15), we arrive at the relations

Zν = Z1, Zu = Z−1
1 , Zg = Z2

2Z
−3
1 , Zv = Z2. (18)

The second and the third relations are consequences of the absence of the renormalization of
the term with Dv in renormalized action (16).

The issue of interest is especially multiplicatively renormalizable equal-time two-point
quantities G(r) (see, e.g., [13]). The example of such quantity is the equal-time structure
functions

Sn(r) ≡ 〈[θ(t, x) − θ(t, x′)]n〉 (19)

in the inertial range, specified by the inequalities l ∼ 1/�  r  L = 1/m (l is an internal
length). The infrared (IR) scaling behaviour of the function G(r) (for r/ l � 1 and any fixed
r/L)

G(r) � ν
dω

G

0 l−dG(r/ l)−�GR(r/L) (20)

is related to the existence of IR-stable fixed points of the RG equations (see the next section).
In (20), dω

G and dG are corresponding canonical dimensions of the function G,R(r/L) is the
so-called scaling function which cannot be determined by RG equation (see, e.g., [8]) and �G

is the critical dimension defined as

�G = dk
G + �ωdω

G + γ ∗
G. (21)

Here, γ ∗
G is the fixed point value of the anomalous dimension γG ≡ µ∂µ ln ZG, where ZG is

renormalization constant of multiplicatively renormalizable quantity G, i.e., G = ZGGR [13]
and �ω = 2 − γ ∗

ν is the critical dimension of frequency with γν = γ1 which is defined further
in the text (for more details see, e.g., [12, 13]).

On the other hand, the small r/L behaviour of the scaling function R(r/L) can be studied
using the Wilson OPE [8]. It shows that, in the limit r/L → 0, the function R(r/L) has the
following asymptotic form

R(r/L) =
∑
F

CF (r/L)(r/L)�F , (22)

where CF are coefficients regular in r/L. In general, the summation is implied over certain
renormalized composite operators F with critical dimensions �F .

In the present paper, we shall study only the first stage of the RG analysis, namely, the
influence of compressibility of the velocity field on the stability of possible scaling regimes
of the model. The influence of compressibility on the anomalous scaling (the second stage of
the RG analysis) will be studied in the subsequent paper.

In what follows, we shall work with two-loop approximation. But the calculation of
higher order corrections is more difficult in the models with turbulent velocity field with finite
correlation time than in the cases with δ-correlations in time. It is related to the fact that the
diagrams for the finite correlated case involve two different dispersion laws, namely, ω ∝ k2

for the scalar field and ω ∝ k2−η for the velocity field which complicates situation even in
the one-loop approximation [12, 13]. But, as was discussed in [12, 13, 15], this difficulty can
be avoided by the calculation of all renormalization constants in an arbitrary specific choice
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of the exponents ε and η that guarantees UV finiteness of the Feynman diagrams. From the
calculational point of view, the most suitable choice is to put η = 0 and leave ε arbitrary.
Thus, the knowledge of the renormalization constants for the special choice η = 0 is sufficient
to obtain all important quantities as the γ -functions, β-functions, coordinates of fixed points,
and the critical dimensions. But such possibility is not automatic in general. In the model
under consideration, it is the consequence of an analysis which shows that in the minimal
subtraction (MS) scheme, which is used in what follows, all needed anomalous dimensions
are independent of the exponents ε and η in the two-loop approximation. But in the three-loop
approximation this dependence can simply appear [15].

Now let us continue with the renormalization of the model. The relation S(θ, θ ′, v, e0) =
SR(θ, θ ′, v, e, µ), where e0 stands for the complete set of bare parameters and e stands for
renormalized one, leads to the relation W(A, e0) = WR(A, e, µ) for the generating functional
of connected Green functions. By the application of the operator D̃µ ≡ µ∂µ at fixed e0 on
both sides of the latest equation, one obtains the basic RG differential equation

DRGWR(A, e, µ) = 0, (23)

where DRG represents operation D̃µ written in the renormalized variables. Its explicit form is

DRG = Dµ + βg(g, u)∂g + βu(g, u)∂u − γν(g, u)Dν, (24)

where we standardly denote Dx ≡ x∂x for any variable x, and the RG functions (the β and
γ -functions) are given by well-known definitions and, in our case, using the relations (18) for
renormalization constants, they have the following form:

γi ≡ D̃µ ln Zi, i = 1, 2 (25)

βg ≡ µ∂µg = g(−2ε − η + 3γ1 − 2γ2), (26)

βu ≡ µ∂µu = u(−η + γ1). (27)

The renormalization constants Z1 and Z2 are determined by the requirement that one-
particle irreducible Green functions 〈θ ′θ〉1−ir and 〈θ ′θv〉1−ir must be UV finite when are
written in renormalized variables. In our case, it means that they have no singularities in the
limit ε, η → 0.

The one-particle irreducible Green function 〈θ ′θ〉1−ir is related to the self-energy operator
�θ ′θ by the Dyson equation

〈θ ′θ〉1−ir = −iω + ν0p
2 − �θ ′θ (ω, p), (28)

where the self-energy operator �θ ′θ is represented by the corresponding one-particle
irreducible diagrams. In the two-loop approximation, it is defined by the diagrams which
are shown in figure 3.

On the other hand, the renormalized function 〈θ ′θv〉1−ir is defined as

〈θ ′θvi〉1−ir = Z2Vi + Vi , (29)

where the function Vi is defined by the diagrams of figure 4 (in two-loop approximation).
Thus, Z1 and Z2 are found from the requirement that the UV divergences are cancelled in

(28) and (29) after substitution ν0 = νZν = νZ1. This determines Z1 and Z2 up to an UV finite
contribution, which are fixed by the choice of the renormalization scheme. In the MS scheme,
all renormalization constants have the form: 1 + poles in ε, η and their linear combinations.
As was already mentioned, in our calculations we can put η = 0. This possibility essentially
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Σθ′θ = +

++

Figure 3. The one- and two-loop diagrams which contribute to the self-energy operator �θ ′θ .

+

+ + +

+ +

Figure 4. The one- and two-loop diagrams which contribute to the function Vi .

simplifies the evaluations of all quantities [12, 13, 15]. The analytical expressions for the
one-loop diagrams in figures 3 and 4 (in the MS scheme) have the following form:

G1p = − Sd

(2π)d

gνp2

4u(1 + u)2

(1 + u)(d − 1 + α) − 2α

d

( µ

m

)2ε 1

ε
, (30)

G1v = i
Sd

(2π)d

gpj

4u(1 + u)2

α

d

( µ

m

)2ε 1

ε
, (31)

where G1p is the result for the one-loop diagram in figure 3 and G1v is the result for the
one-loop diagram in figure 4. Here, Sd = 2πd/2/�(d/2) denotes the d-dimensional sphere.
The two-loop expressions for the diagrams in figures 3 and 4 are rather huge, therefore we
shall not present their explicit form separately but rather we present complete expressions for
renormalization constants Z1 and Z2 which have the following structure:

Zi = g

ε
Ai +

g2

ε

(
1

ε
Bi + Ci

)
, i = 1, 2. (32)
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Now using the definition of the anomalous dimensions γ1,2 in (25) we obtain

γ1 ≡ µ∂µ ln Z1 = −2(ḡA1 + 2ḡ2C1), (33)

γ2 ≡ µ∂µ ln Z2 = −2(ḡA2 + 2ḡ2C2), (34)

where we denote ḡ = gSd/(2π)d . The one-loop contributions A1 and A2 in (33) and (34) are
defined as follows:

A1 = − 1

4u(1 + u)2

(1 + u)(d − 1 + α) − 2α

d
, (35)

A2 = α

4du(1 + u)2
, (36)

and the two-loop contributions C1 and C2 have the form

C1 = 1

16d2u2(1 + u)3

(
C10 + αC11 + α2C12

)
, (37)

C2 = 1

32d3u2(1 + u)6

(
αC21 + α2C22

)
, (38)

where

C10 = (d − 1)(d + u)H2

(d + 2)(1 + u)2
, (39)

C11 = d − 1

1 + u
− u(d − 1)(2 + u)(2(u − 2)u + d(2 + 3u))

d(1 + u)3
H0

+
(d − 1)(4(−2 + u)u + d2(−2 + 3u2(2 + u)) + 2d(2 + u(5 − 5u + u3)))

d2(1 + u)3
H1,

(40)

C12 = 3u − 1

(1 + u)2
+

uH0

d(1 + u)4
(2d2u(1 + u)2 − (u − 3)(u − 1)u(2 + u)

+ d(2 + u)(1 + u(−2 + (u − 6)u)))

+
H1

d2(1 + u)4
(2(u − 3)(u − 1)u − 2d3u2(1 + u)2

− d2(−1 + u(5 + u(2 + u)(3 + (u − 6)u)))

+ d(−2 + u(1 + u(22 + (u − 4)u(2 + u))))), (41)

C21 = −(d − 1)d(1 + u)2 − (d − 1)du(3 + 5u + 2u2)H0

+ (d − 1)(1 + 2u)(2 + du(2 + u))H1 +
2(d − 1)d(u − 1)

d + 2
H2, (42)

C22 = −4d(1 + u) + u(−2(2 + u) + d(5 − 2u(1 + u) + d(−1 + 2u(1 + u))))H0

+
2(2(1 + u)− d3u2(1 + u)2 + d(−3 + u + 5u2 + u3) + d2(1 − u + u3 + u4))

d(1 + u)
H1

+
2d((u − 1)2 + d(1 + 2u − u2))

(2 + d)(1 + u)
H2, (43)
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where we have used the following notation

Hi = 2F1

[
1, 1; i +

d

2
; 1

(1 + u)2

]
, i = 0, 1, 2 (44)

for the corresponding hypergeometric function 2F1[a, b; c; z] = 1 + ab
c·1z + a(a+1)b(b+1)

c(c+1)·1·2 z2 + · · ·.
The functions Bi, i = 1, 2, which are introduced in (32) are not important in what follows,
therefore we shall not define them explicitly.

5. Fixed points and scaling regimes

Possible scaling regimes of a renormalizable model are directly given by the IR-stable fixed
points of the corresponding system of RG equations [8, 16]. The coordinates of the fixed
point of the RG equations are defined by β-functions, namely, by the requirement of their
vanishing. In our model, the coordinates g∗, u∗ of the fixed points are found from the system
of two equations

βg(g∗, u∗) = βu(g∗, u∗) = 0. (45)

The beta functions βg and βu are defined in (26) and (27). The IR asymptotic behaviour is
governed by the IR-stable fixed point which is given by the positive eigenvalues of the matrix
� of the first derivatives:

�ij =
(

∂βg/∂g ∂βg/∂u

∂βu/∂g ∂βu/∂u

)
. (46)

The influence of compressibility on the scaling regimes of the present model in one-loop
approximation was investigated in [13]. We are interested in the answer of the following
question: how can the two-loop approximation change the picture of the scaling regimes
discussed in [13]?

In what follows, we shall try to study possible scaling regimes in detail. First of all, we
shall investigate the rapid-change limit: u → ∞. In this regime, it is necessary to make
transformation to new variables, namely, w ≡ 1/u and g′ ≡ g/u2, with the corresponding
changes in the β-functions:

βg′ = g′(−2ε + η + γ1 − 2γ2), (47)

βw = w(η − γ1). (48)

It is well-known that in the rapid-change model the higher than one-loop corrections to the
self-energy operator are equal to zero. On the other hand, the renormalization of the velocity
field is absent at all as a consequence of the fact that Z2 = 1 at all orders of the perturbation
theory. It can be also seen directly by the corresponding manipulations with our γ -functions
(33) and (34). Therefore, we arrive at the one-loop results of [13] (in the rapid-change model
limit), namely,

γ1 = ḡ′ d − 1 + α

2d
, γ2 = 0, (49)

where again ḡ′ = g′Sd/(2π)d .
In this regime, we have two fixed points denoted as FPI and FPII in [12, 13]. The first

point is trivial one

FPI : w∗ = g′
∗ = 0, (50)
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with γ ∗
1 = 0, and diagonal matrix � with eigenvalues (diagonal elements)

�1 = η, �2 = η − 2ε. (51)

Thus, this fixed point is IR stable when η > 0, and, at the same time, η > 2ε. The second
point is defined as

FPII : w∗ = 0, ḡ′
∗ = 2d

d − 1 + α
(2ε − η), (52)

with exact one-loop result γ ∗
1 = 2ε − η. The corresponding � matrix is triangular with

diagonal elements (eigenvalues):

�1 = 2(η − ε), �2 = 2ε − η. (53)

It means that this kind of the fixed point is IR stable when η < 2ε together with η > ε.
The second special case of the present model is the so-called frozen regime with the frozen

velocity field. It is obtained from our model in the limit u → 0. To consider this transition,
it is again appropriate to change the variable g to the new variable g′′ ≡ g/u [12]. Then the
β-functions are transformed to the following ones:

βg′′ = g′′(−2ε + 2γ1 − 2γ2), (54)

βu = u(−η + γ1), (55)

with unchanged β-function for parameter u. In this notation, the anomalous dimensions γ1,2

have the form

γ1 = −2(ḡ′′A′′
1 + 2ḡ′′2C ′′

1 ), (56)

γ2 = −2(ḡ′′A′′
2 + 2ḡ′′2C ′′

2 ), (57)

where, as obvious, ḡ′′ = g′′Sd/(2π)d , and the one-loop contributions are now given as

A′′
1 = −d − 1 − α

4d
, (58)

A′′
2 = α

4d
, (59)

and the two-loop contributions C ′′
1 and C ′′

2 are now

C ′′
1 = 1

16d2
(C ′′

10 + αC ′′
11 + α2C ′′

12), (60)

C ′′
2 = 1

32d3
(αC ′′

21 + α2C ′′
22), (61)

with

C ′′
10 = (d − 1)d

(d + 2)
H02 = d − 1, (62)

C ′′
11 = (d − 1)

(
1 − 2(d − 2)

d
H01

)
= 1 − d, (63)

C ′′
12 = −1 +

d − 2

d
H01 = 0, (64)
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C ′′
21 = 2(d − 1)

(
H01 − d

d + 2
H02

)
= 4(d − 1)

d − 2
, (65)

C ′′
22 = 2(d − 1)(d − 2)

d
H01 +

2d(1 + d)

(2 + d)
H02 = 4d, (66)

where we denote

H0i = 2F1

[
1, 1; i +

d

2
; 1

]
= d − 2 + 2i

d − 4 + 2i
, i � 1. (67)

The system of β-functions (54) and (55) exhibits two fixed points, denoted as FPIII and FPIV
in [12]. They are related to the corresponding two scaling regimes. One of them is trivial,

FPIII : u∗ = g′′
∗ = 0, (68)

with γ ∗
1 = γ ∗

2 = 0. The eigenvalues of the corresponding matrix �, which is diagonal in this
case, are

�1 = −2ε, �2 = −η. (69)

Thus, this regime is IR stable only if both parameters ε and η are negative simultaneously.
The second, non-trivial, point is

FPIV : u∗ = 0, ḡ′′
∗ = − ε

2(A′′
1 − A′′

2)
− C ′′

1 − C ′′
2

2(A′′
1 − A′′

2)
3
ε2, (70)

with exact one-loop relation γ ∗
1 = γ ∗

2 + ε. After substitution of the corresponding quantities
one obtains the following expression for the coordinates of the fixed point:

u∗ = 0, ḡ′′
∗ = 2dε

d − 1

{
1 +

ε

(d − 1)2

[
(d − 1)

(
1 − α

(
1 +

2

d(d − 2)

))
− 2α2

]}
.

(71)

The eigenvalues of the matrix � (taken at the fixed point) are

�1 = 2ε

(
1 − C ′′

1 − C ′′
2

(A′′
1 − A′′

2)
2
ε

)
, �2 = ε − η + γ ∗

2 . (72)

After corresponding substitutions one has

�1 = 2ε

{
1 − ε

(d − 1)2

[
(d − 1)

(
1 − α

(
1 +

2

d(d − 2)

))
− 2α2

]}
, (73)

�2 = ε − η +
αε

d − 1

[
−1 + ε

2α2(d − 2)d − (d − 1)(d2 − 2) − α(2 + (d − 3)d2)

(d(d − 1)2(d − 2))

]
. (74)

The conditions ḡ′′
∗ > 0,�1 > 0 and �2 > 0 for the IR-stable fixed point lead to the restrictions

on the values of the parameters ε and η. First, suppose that ε < 0. Then from the conditions
ḡ′′

∗ > 0 and �1 > 0 one has the following restrictions which must be fulfilled simultaneously:

1 + εD < 0, 1 − εD < 0, (75)

but they cannot be fulfilled at the same time. Thus, our first condition is ε > 0. In (75), D is
given as

D = 1

(d − 1)2

[
(d − 1)

(
1 − α

(
1 +

2

d(d − 2)

))
− 2α2

]
. (76)

To have ḡ′′
∗ > 0 and �1 > 0 together with ε > 0, the following inequalities must be held

−1 < εD < 1, (77)
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which restricts the value of ε as a function of the parameter α and the dimension of the space
d. In the incompressible case (α = 0), condition (77) is reduced into the simple inequality

ε < d − 1. (78)

In the general case, for each value of d, there exists a ‘critical’ value of α in which D = 0. We
denote it as αc. In this situation, ε can be arbitrary, i.e., condition (77) is fulfilled automatically.
The value of αc is defined as follows:

αc = 2 − 4d + 3d2 − d3 + (4 − 16d − 4d2 + 36d3 − 23d4 + 2d5 + d6)1/2

4d(d − 2)
. (79)

For example, for d = 3 its value is αc =
√

61−5
6 � 0.468. Therefore, in the compressible

model, the situation is a little bit more complicated as a result of a competition between
incompressible and compressible terms within two-loop approximation which leads to the
existence of αc. How does it work? The answer is the following. If we continuously
increase the value of the parameter α, the region of the stability of the fixed point defined
by the inequalities (77) increases too. This restriction vanishes completely when α reaches
the ‘critical’ value αc. In this rather specific situation, the two-loop influence on the region
of the stability of fixed point defined by condition (77) is exactly zero. Then, if the value
of parameter α increases further, condition (77) appears again and restriction on ε becomes
stronger when α tends, in principle, to infinity. In this limit, ε → 0. On the other hand, it
must be stressed that in our model only relatively small values of α are allowed (α  1).
It corresponds to small fluctuations of the density ρ in the system which is supposed in our
investigation. In other words, it is supposed that the stochastic component of the velocity field
of the fluid is much smaller than the velocity of the sound in the system (the Mach number
Ma  1).

The last condition on the stability of the IR fixed point is found from the requirement to
have �2 > 0. It reads

η < ε +
αε

d − 1

[
−1 + ε

2α2(d − 2)d − (d − 1)(d2 − 2) − α(2 + (d − 3)d2)

(d(d − 1)2(d − 2))

]
. (80)

In the incompressible case it is reduced into the simple condition

η < ε, (81)

which is held at each order of the perturbation theory.
At the end, let us consider the most interesting scaling regime with finite value of the fixed

point for variable u. The coordinates of the fixed point are now defined by the requirement of
the vanishing of the β-functions which are given in (26) and (27). The fixed point value for
ḡ = gSd/(2π)d is given as

FPV: ḡ∗ = − ε

2(A1 − A2)
− C1 − C2

2(A1 − A2)3
ε2, (82)

where the functions A1, A2, C1 and C2 are given in (35)–(38), and where the parameter u is
taken at its fixed point value u∗ which is given implicitly by the equation

−η + γ ∗
1 (u∗) = 0. (83)

Using the exact relations

γ ∗
1 = η, γ ∗

2 = η − ε, (84)

the expression for the fixed point value of ḡ can be rewritten as a series (expansion) of the
parameter η or a linear combination of η and ε. For example, in [13], where the problem was
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analysed in one-loop approximation, it was expressed as a function of 2ε−η (in our notation).
In the framework of one-loop approximation, it allows one to have the linear dependence of
ḡ∗ on the fixed point value of the parameter u. Together with another choice of the linear
combination of η and ε, namely η–ε, it also leads to the simple expression for the fixed point
value of u. Thus, the coordinates of the fixed point in one-loop approximation are [13]

ḡ∗ = 2d(1 + u∗)
d − 1 + α

(2ε − η), u∗ = −1 +
α

d − 1 + α

η − 2ε

η − ε
. (85)

It allows, together with the requirement of the positive eigenvalues of the corresponding matrix
of the first derivatives �, to find simple conditions for the IR-stable fixed point. They are
defined by inequalities ε > 0, ε > η and η > ε d−1−α

d−1 [13].
The situation is essentially more complicated when we are working in two-loop

approximation. It is given by the fact that now we have nonlinear dependence of ḡ on
the parameters η and ε, and the expression for the fixed point value of u is now given only
implicitly in rather complicated expression containing hypergeometric functions. Another
complication, which defends to analyse the problem in general, is related to the fact that
contrary to the incompressible case when one has additional condition, namely η = ε, no
such condition exists in compressible case under consideration. As a result, the analysis of the
IR stability of the general case of the present model has to be done individually for concrete
situation. It is rather cumbersome and it will be done in the subsequent work.

In what follows, let us only give the general analysis of the most interesting case when
one suppose the relation η = ε. In this situation from the definition of the β-functions given
in (26) and (27), one obtains the condition

γ ∗
2 = 0. (86)

Thus, in this case, the coordinates of the fixed points are given as

ḡ∗ = − ε

2A1
− C1

2A3
1

ε2, (87)

A2(u∗) + 2ḡ∗C2(u∗) = 0, (88)

but even in this situation the fixed point value of u is defined by complicated implicit
equation (88) and its exhausted analysis must be discussed separately.

6. Conclusions

We have studied the influence of compressibility on the possible IR scaling regimes of the
model of a passive scalar advected by a Gaussian velocity field with finite time correlations by
means of the field theoretic RG technique. The possible scaling regimes are directly connected
to the existence of IR-stable fixed points of the RG equations. The dependence of the fixed
points on the parameter of compressibility and their IR stability are discussed. The most
attention is paid to the frozen limit of the model where inequalities which define the stable IR
scaling regimes are found analytically. The existence of a ‘critical’ value αc of the parameter
of compressibility α at which one of the two-loop conditions is cancelled as a result of the
competition between compressible and incompressible terms is discussed in detail. The main
conclusion is that for the small value of parameter α the region of stability is not restricted
considerably. It is also shown that the most general case with finite time correlations of the
velocity field is more complicated within two-loop approximation and has to be considered
separately once more.
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